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Abstract

Various methods for sampling stationary, Gaussian stochastic processes are investigated and compared with an

emphasis on applications to processes with power law energy spectra. Several approaches are considered, including a

Riemann summation using left endpoints, the use of random wave numbers to sample a the spectrum in proportion to

the energy it contains, and a combination of the two. The Fourier-wavelet method of Elliott et al. is investigated and

compared with other methods, all of which are evaluated in terms of their ability to sample the stochastic process over a

large number of decades for a given computational cost. The Fourier-wavelet method has accuracy which increases

linearly with the computational complexity, while the accuracy of the other methods grows logarithmically. For the

Kolmogorov spectrum, a hybrid quadrature method is as efficient as the Fourier-wavelet method, if no more than eight

decades of accuracy are required. The effectiveness of this hybrid method wanes when one samples fields whose energy

spectrum decays more rapidly near the origin. The Fourier-wavelet method has roughly the same behavior indepen-

dently of the exponent of the power law. The Fourier-wavelet method returns samples which are Gaussian over the

range of values where the structure function is well approximated. By contrast, (multi-point) Gaussianity may be lost at

the smaller length scales when one uses methods with random wave numbers.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

We consider the sampling of Gaussian stochastic processes with a power law energy spectrum (see

[1,5,9,15]). If this spectrum is denoted by EðkÞ then the stochastic process uðxÞ, x denoting the independent

variable, has the spectral representation,

uðxÞ ¼
Z 1

�1
e2pikxE1=2ðkÞdW ðkÞ; ð1Þ

a stochastic integral with respect to increments dW ð�Þ of a Wiener process W ðkÞ.
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A method for performing this quadrature based on a wavelet expansion, the Fourier-wavelet method of

Elliott et al. [6], is described and compared to other approaches, including one based on a Riemann

summation using left endpoints, the use of random wave numbers to sample the spectrum in proportion to
the energy it contains, and a combination of the two. These procedures are evaluated based on their ability

to sample accurately a large portion of the energy spectrum EðkÞ – in particular, on the spread between

the highest and lowest wave numbers accurately modelled – and the dependence of this spread on the

computational complexity involved in generating a sample. The extent to which the sampling of the field

approximates a Gaussian field is also investigated.

These methods are described in detail in Sections 2–4. In Section 5, we explain how the accuracy and

computational complexity of each method is assessed. Section 5.4 in particular contains qualitative pre-

dictions about the accuracy, and its dependence on the computational complexity, of each method. Finally,
numerical results of testing on three examples of power law spectra are presented in Section 6. Section 7

summarizes our conclusions.
2. Fourier-wavelet method

We begin by reminding the reader of the Fourier-wavelet method; for introduction and derivation see [6].

2.1. Relation to spectral representation

Recall the spectral representation of u, (1) above. For fixed x, this is a stochastic integral of the form

I ¼
R
f ðkÞdW ðkÞ. By representing the integrand f in an appropriate orthonormal basis for L2, it may be

written I ¼
P

cncn, where the cn are independent Gaussian random variables, and the coefficients cn are the
inner products cn ¼

R
f ðkÞ/nðkÞdk for functions /n whose complex conjugates are our orthonormal basis.

One may formally express this representation of a stochastic integral with respect to increments dW of a

Wiener process via the identity

dW ðkÞ ¼
X

cn/nðkÞdk;

where ðcnÞ is a sequence of independent standard normal random variables and the ð/nÞ form a complete

orthonormal basis.

In this case the coefficients cn ¼ cnðxÞ depend on x, and are the functions

cnðxÞ ¼
Z

e2pikxE1=2ðkÞ/nðkÞdk ¼ F�1½E1=2/n�ðxÞ; ð2Þ

where F denotes the Fourier transform. So the process uðxÞ is the sum of these functions cnðxÞ with

Gaussian random weights cn:

uðxÞ ¼
X

cncnðxÞ: ð3Þ

A practical algorithm is constructed from the preceding representation of uðxÞ by carefully truncating the
sum so as to include only important terms.

The idea of Elliott et al. is to use Meyer wavelet functions [2–4] to create the needed orthonormal basis.

The Fourier transform of the Meyer wavelet w has the form

/ðkÞ ¼ FwðkÞ ¼ A signðkÞeipkbðjkjÞ; ð4Þ
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where A is a constant of normalization (it is convenient to take A ¼ �i so that wðxÞ is real; here we take

A ¼ �i). The function bð�Þ is smooth and satisfies bðkÞ ¼ 0 for frequencies k outside an appropriate interval.

Here is the specific form of bðkÞ, where kP 0 (and m ¼ mð�Þ is a function):

bðkÞ ¼
sin p

2
mð3k � 1Þ

� �
; k 2 ð1

3
; 2
3
�;

cos p
2
mð3 k

2
� 1Þ

� �
; k 2 ð2

3
; 4
3
Þ;

0; else:

8<
: ð5Þ

The function m is chosen to guarantee whatever smoothness is desired in the wavelet function /. For
things to work out it should be a nondecreasing smooth function satisfying mðxÞ ¼ 0 when x < 0, mðxÞ ¼ 1

when x > 1, and mðxÞ þ mð1� xÞ ¼ 1 for all x. In the work of Elliott et al. construction of such a function m
(for x 2 ½0; 1�) is achieved through the use of (the integral of) a spline function, whence m can be designed to

achieve the desired smoothness, taking the form,

mðxÞ ¼ ð�1Þp 4
p�1

p
maxðx
"

� x0; 0Þp þ � � �maxðx� xp; 0Þp þ 2
Xp�1

j¼1

ð � 1Þj maxðx� xj; 0Þp
#
; ð6Þ

for the interpolation points xj ¼ ð1=2Þðcosðððp � jÞ=pÞpÞ þ 1Þ. The parameter p is the order of the spline

and determines how smooth the resulting function b will be. For testing, the choice p ¼ 2 was made (in

accordance with the choice of Elliott et al.).

Taken together, these functions define a complex function /ðkÞ ¼ FwðkÞ which is the Fourier transform

of the Meyer mother wavelet wðxÞ. The family of wavelet functions is generated from w by the wavelet

relation (cf. [2,4])

wmnðxÞ ¼ 2�m=2wð2�mx� nÞ: ð7Þ

Since the Meyer wavelets wmnðxÞ form an orthonormal basis for L2, and since the Fourier transform

preserves inner products, it follows that the corresponding functions /mnðkÞ ¼ FwmnðkÞ themselves are a

suitable orthonormal basis (in k-space) to use in the representation (3) of the stochastic integral for uðxÞ. We

thus have the representation

uðxÞ ¼
X
m

X
n

cmncmnðxÞ;

cmnðxÞ ¼
Z

e2pikxE1=2ðkÞ/mnðkÞdk;
ð8Þ

where the /mnðkÞ are the collection of orthonormal basis functions derived from the Fourier transforms of

the Meyer wavelets wmnðnÞ, as defined above by (4)–(7). (No confusion need arise from the fact that the

wavelets, and thus the sum, are now doubly indexed.) For this to lead to a practical algorithm, the sum

must be truncated and the integrals cmnðxÞ must be evaluated, with acceptable accuracy.
2.2. Implementation

In this section let x be fixed; we wish to compute uðxÞ approximately from the representation (8). We

focus on the kernel functions cmnðxÞ ¼ F�1½E1=2/mn�ðxÞ. First we notice that this can be simplified; using (7),

trivial manipulations show that

/mnðkÞ ¼ ½Fwmn�ðkÞ ¼ 2m=2e�2pik�2mn½Fw�ð2mkÞ;

and so we have
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cmnðxÞ ¼ F�1½E1=2
m /�ð2�mx� nÞ;

where E1=2
m ðkÞ ¼ 2�m=2E1=2ð2�mkÞ.

We define fmðnÞ ¼ F�1½E1=2
m /�ðnÞ, which allows us to write for the kernels cmn the expression

cmnðxÞ ¼ fmð2�mx� nÞ:

Substituting this result into expression (8) for uðxÞ, we get

uðxÞ ¼
X
m

X
n

cmnfmð2�mx� nÞ:

Because of presumed built-in decay of the functions cmn away from zero, equivalently of the fm, it is
advantageous to re-center this sum around the term with the smallest (in magnitude) value of the argument

2�mx� n. To this end define for each term m of the outer sum the index �nnm ¼ b2�mxc and shift the inner

index n to n0 ¼ n� �nnm. This results in the expression

uðxÞ ¼
X
m

X
n0

cm;�nnmþn0fm ð2�mx
�

� �nnmÞ � n0
�
: ð9Þ

Assuming fm to decay quickly away from zero, the bulk of its support in this expression will be con-
centrated on those n0 values nearest to zero. For each m we suppose most of the support of fm is con-

centrated between some pair of integers, �N and N , so that above we may discard terms for n0 outside
½�N þ 1;N � without significant loss.

In addition one must decide for which values of m to include the coefficient terms cmnðxÞ ¼ fmð2�mx� nÞ.
The parameter m governs the octave, or spatial scale of the support of wavelets to be included; upon

truncation functions fmð�Þ whose features vary too slowly or too rapidly are discarded from the sum, so that

our representation captures only the features of the process u between some minimum and maximum length

scale (equivalently, within some frequency range). By rescaling the length variable x if necessary, we may
therefore assume that the sum over m is truncated so as to include only terms satisfying �M 6m6 0, for

some parameter M which corresponds to the smallest-scale features of u we hope to model accurately.

The wavelet representation based on (9) is thus written as the finite sum,

uðxÞ � uW ðxÞ ¼
X0
m¼�M

XN
n¼�Nþ1

cm;�nnmþnfm ð2�mx
�

� �nnmÞ � n
�
; ð10Þ

where the cutoff choicesM (howmany octaves to include) andN (dictated by the support of fm) are parameters

of the method. The algorithm based on this representation of uðxÞ is termed the Fourier-wavelet method.

Evaluation of the kernel functions fmðnÞ ¼ F�1½E1=2
m /�ðnÞ is accomplished by first evaluating fm on a

discrete grid using the FFT and then interpolating to obtain values of fmðxÞ for x not on the grid; see [6] for

details. A benefit of this approach for generating many sample paths is that the grid values fmðxjÞ do not

depend on the particular realization and can be computed once in advance; from these the desired number

of sample paths uðxÞ can be generated.

Finally, note that the Gaussian random coefficients needed in (10) have the form cm;�nnmþn. This depends on
�nnm ¼ b2�mxc, which depends on x. For a given m, we could need in principle Gaussian coefficients cmp for p
anywhere from �N to b2�mX c þ N . The total number of Gaussian random variables which could theo-

retically participate in the sum (10) is thus on the order of

X0
m¼�M

b2�mX c � 2Mþ1X :
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Generating all of these random variables, and then storing the whole collection as a representation of one

realization of a stochastic process, quickly becomes prohibitive for values of M which are large enough to

capture the behavior of uðxÞ on a reasonably small scale.

To remedy this, Elliott et al. [6] employ a reversible pseudorandom number generator (for example, see

[7,10]) to sample the needed coefficients cmn. A sequence of uniform random numbers is generated, and from

them Gaussian random numbers are obtained by the Box–Muller transform. When one uses a reversible

pseudorandom number generator, all of the Gaussian random numbers needed for the sum (10) – and

hence, for a given realization of uðxÞ – are determined by the initial number in the sequence: any other
number in the sequence is obtainable from the first number by predetermined arithmetic operations. This

savings in computation comes at some cost, due to the overhead involved in arranging for efficient cal-

culation of any given element of the pseudorandom number sequence.
3. Two simple methods

In this section we examine two basic methods for generating numerical sample paths of u. Each method
is based on quadrature of the spectral representation of uðxÞ, one with fixed wave numbers and one using

random wave numbers.
3.1. A fixed wave number scheme

First, assume u 2 R, so E is even. This places a restriction on dW : Eq. (1) must now be read with the tacit

understanding that W ð�kÞ ¼ �W ðkÞ. (In other words, W ðkÞ can be chosen freely only for kP 0.) Eq. (1)

may be rewritten as

uðxÞ ¼ 21=2
Z 1

0

E1=2ðkÞ cosð2pkxÞdW 1ðkÞ
�

þ
Z 1

0

E1=2ðkÞ sinð2pkxÞdW 2ðkÞ
�
; ð11Þ

where W 1 and W 2 are real, independent Wiener processes.

Since the energy spectrum E satisfies EðkÞ ! 0 as k ! 1, we introduce an upper frequency cutoff K and

truncate the integrals. Similarly, it will usually be necessary to introduce a low frequency cutoff c for the

spectra we consider, because typically they will have a singularity at k ¼ 0. (Consider the Kolmogorov

spectrum EðkÞ / k�5=3, for example.) So we replace the infinite integrals in (11) with the finite approxi-

mations

uðxÞ � 21=2
Z K

c
E1=2ðkÞ cosð2pkxÞdW 1ðkÞ

�
þ
Z K

c
E1=2ðkÞ sinð2pkxÞdW 2ðkÞ

�
: ð12Þ

These integrals can be discretized as follows: divide the domain ½c;K� into Nf equally sized cells, each of

size Dk ¼ ððK � cÞ=NfÞ, and approximate the integrals by Riemann sums using left endpoints:

uðxÞ � 21=2
XNf�1

j¼0

E1=2ðkjÞ cosð2pkjxÞDW 1
j

"
þ
XNf�1

j¼0

E1=2ðkjÞ sinð2pkjxÞDW 2
j

#
:

By the definition of the Wiener process, the increments DW i
j (for both i ¼ 1 and i ¼ 2) are independent,

mean zero Gaussian random variables, with variance kjþ1 � kj ¼ Dk. We can thus write each as

W i
j ¼ Dk1=2Zi

j, where the Z
i
j are independent, identically distributed standard normal random variables. Our

method now looks like:
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uðxÞ � uFðxÞ ¼ ð2DkÞ1=2
XNf�1

j¼0

E1=2ðkjÞ cosð2pkjxÞZ1
j

h
þ sinð2pkjxÞZ2

j

i
; kj ¼ cþ jDk; Dk ¼ K � c

Nf

: ð13Þ

We will call this the fixed wave number method because it approximates uðxÞ by a finite sum of waves

with predetermined wave numbers. (See also the Fourier method with equally spaced grid points, in [12].)
3.1.1. Discretization limitation

In order for the scheme represented by (13) to be accurate, Dk should be small. On the other hand, the

smaller Dk is, the more computationally intensive the algorithm becomes. In addition, because of the pe-

riodic factor in each integrand, care should be taken to assure that in the process of discretization, the

function is not undersampled.

Our goal is to sample uðxÞ not for all x, but rather for x belonging to some finite domain, which may be
taken to be ½0;X �. Indeed, representation (13) is a finite sum of trigonometric functions, so for any Dk, there
will be an upper limit X to the values of x for which we are willing to submit (13) as a fair approximation to

uðxÞ.
Let us illustrate this in terms of the covariance function RFðxÞ of uFðxÞ. Take low wave number cutoff

c ¼ Dk; it is easy to check that RF is

RFðxÞ ¼ huFðx0 þ xÞuFðx0Þi ¼ 2Dk
XNf�1

j¼1

EðjDkÞ cosð2pjDkxÞ:

So uF of our method possesses a covariance function which is even and periodic with period L ¼ 1=Dk. This
periodicity does not hold for the covariance function RðxÞ, so the model will not be accurate on ½0;X � if
X > L=2. Consequently, given a fixed interval ½0;X � on which to generate the sample, at the very least Dk
should be chosen so that Dk6 ð2X Þ�1

.

This observation provides the starting point for choosing Dk when obtaining a sample from (13). This

parameter, along with the other parameters X , c, and K, specifies the representation uF.
3.2. A random wave number method

In this section we describe a method using random wave numbers, sometimes called the randomization
method (see [12,14], also [13] for a variant), for sampling uðxÞ. Its choice of random wave numbers is an

extension of Monte Carlo algorithms for integration. Suppose we have an integral of the form

J ¼
Z b

a
gðkÞrðkÞdW ðkÞ: ð14Þ

The approximation to this integral should be a mean-zero Gaussian random variable, with variance that

well approximates the true variance hjJ j2i ¼
R b
a jgðkÞj

2jrðkÞj2 dk. The latter integral can be treated by a

Monte Carlo approach using randomly chosen points in k-space. Let f ðkÞ ¼ jgðkÞj2 and qðkÞ ¼ jrðkÞj2. If
Q ¼

R b
a qðkÞdk is finite, then a sum of the form

~II ¼ Q
Nr

XNr

i¼1

jgðkiÞj2; ð15Þ

where the ki are independent random variables taken according to the probability density

pðkÞ ¼ jrðkÞj2=Q, can be expected to converge to I ¼ hjJ j2i as the number of Monte Carlo points Nr goes

to infinity.
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The sum

~JJ ¼ Q
Nr

� �1=2XNr

i¼1

aigðkiÞ;

where the ki are as before and the ai are independent standard normal random variables (Gaussian with

mean zero and variance 1), has mean h ~JJi ¼ 0 and variance

hj ~JJ j2i ¼ Q
Nr

XNr

i¼1

hjgðkiÞj2i ¼ h~IIi ¼ I ¼ hjJ j2i:

The variance of ~JJ as defined above is precisely the expected value of the Monte Carlo approximation

(15), and thus matches the true variance hjJ j2i. While ~JJ is a weighted sum of Gaussian random variables,

the weights are random and thus (multi-point) Gaussianity is lost. On the other hand, ~JJ has the correct

mean and the correct variance.
3.2.1. Application to spectral representation

In Section 3.1 we saw that the spectral representation for real uðxÞ becomes (11):

uðxÞ ¼ 21=2
Z 1

0

E1=2ðkÞ cosð2pkxÞdW 1ðkÞ
�

þ
Z 1

0

E1=2ðkÞ sinð2pkxÞdW 2ðkÞ
�
:

Write this as

uðxÞ ¼ 21=2½J1ðxÞ þ J2ðxÞ�

and apply the algorithm outlined in the preceding section to J1ðxÞ and J2ðxÞ, where the spatial variable x is a
parameter.

Specifically, for J1ðxÞ we wish to estimate

J1ðxÞ ¼
Z 1

0

cosð2pxkÞE1=2ðkÞdW 1ðkÞ:

(This is analogous to (14); here gð�Þ ¼ cosð2pxð�ÞÞ and rð�Þ ¼ E1=2ð�Þ.) We begin by letting Q ¼
R1
0

EðkÞdk so
as to properly normalize the probability density; however, for the energy spectra we consider EðkÞ may not

be integrable. The Kolmogorov spectrum EðkÞ / k�5=3 has a nonintegrable singularity at k ¼ 0. To get

around this, introduce a low wave number cutoff c0, so that

J1ðxÞ �
Z 1

c0

cosð2pxkÞE1=2ðkÞdW 1ðkÞ; ð16Þ

and similar for J2ðxÞ. At this step in the process, by leaving out the energy contained in those wave numbers

smaller than c0, we are implicitly putting an upper limit � 1=c0 on the values of x for which this approx-

imation is likely to hold. It is possible to rationalize this cutoff by realizing that spectra such as the Kol-

mogorov spectrum are only designed to represent phenomena in an intermediate range of wave numbers.

Now sample Nr points fkigNr

i¼1 randomly from the probability density pðkÞ ¼ ð1=QÞEðkÞ; Q ¼
R1
c0

EðkÞdk.
Define the approximation ~JJ1ðxÞ by

~JJ1ðxÞ ¼
Q
Nr

� �1=2XNr

i¼1

ai cosð2pkixÞ;
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where the ai are independent, standard normal random variables. In a similar way define

~JJ2ðxÞ ¼
Q
Nr

� �1=2XNr

i¼1

bi sinð2pkixÞ;

where the bi are standard normal random variables, independent of the ai. Taken together, these quadr-

atures using random k values yield

uðxÞ � 2Q
Nr

� �1=2XNr

i¼1

ai cosð2pkixÞ þ bi sinð2pkixÞ; ð17Þ

where Q ¼
R1
c0

EðkÞdk as above and the Nr discrete wave numbers ki are randomly chosen from the wave

number domain ½c0;1Þ according to the probability density pðkÞ ¼ EðkÞ=Q.
However, straightforward application of approximation (17) directly to the integrals is not necessarily

the most desirable approach.

3.2.2. Separation of wave numbers

In the scheme (17), we have little control over the spread of wave numbers, and thus over how much

small scale versus large scale detail we are including in the approximation to uðxÞ. To remedy this, we can

break up the integrals into a sum of integrals over smaller domains and approximate each one separately

using random wave numbers within its domain of integration. For example, let fIjgMj¼1 be a collection of

disjoint intervals with ½c0;1Þ ¼
SM

j¼1 Ij. Then we can write, in (16),

J1ðxÞ �
Z 1

c0

cosð2pxkÞE1=2ðkÞdW 1ðkÞ ¼
XM
j¼1

Z
Ij

cosð2pxkÞE1=2ðkÞdW 1ðkÞ ¼
XM
j¼1

J1jðxÞ:

Now apply the preceding approach to each integral J1jðxÞ. A probability density can be defined on in-

terval Ij by pjðkÞ ¼ EðkÞ=Qj, where Qj ¼
R
Ij
EðkÞdk. Sample Nj points ðkji Þ, i ¼ 1; 2; . . . ;Nj from the density

pjðxÞ. Finally, form the sum

J1jðxÞ �
Qj

Nj

� �1=2XNj

i¼1

aji cosð2pxkji Þ;

where the aji are independent standard normal random variables.

To guarantee that high wave numbers are represented, it is convenient to take Nj ¼ 1 point from each

interval, and it is further convenient to set Qj ¼ Q=M for all j, so that the integral of EðkÞ over each interval

Ij ¼ ½Kj�1;KjÞ is the same. This uniquely determines M � 1 points Ki (KM ¼ 1) with

c0 ¼ K0 6K1 6K2 6 � � � 6KM�1 6KM ¼ 1;

each interval ½Kj�1;KjÞ bracketing a range of wave numbers k which contains the same amount of energy.

The random wave numbers are chosen one from each interval kj 2 ½Kj�1;KjÞ; in particular we can be sure

that the scheme contains a wave number at least as large as KM .
Using these randomly chosen wave numbers kj, form the sum

uðxÞ � uRðxÞ ¼ 2Q
Nr

� �1=2XNr

j¼1

aj cosð2pkjxÞ þ bj sinð2pkjxÞ; ð18Þ

where Q is the integral of EðkÞ on ½c0;1Þ and the aj and bj, j ¼ 1; 2; . . . ;N , are independent standard normal

random variables. The above scheme is called the randomization method, or random wave number method.
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4. A hybrid scheme

In this section we describe a scheme which is a hybrid of the two preceding schemes. Since the fixed wave

number method seems better for treating the low wave numbers (ensuring that they are represented well),

while the random wave number method allows us to retain more of the upper end of the spectrum for a

given computational cost, it makes sense to apply both schemes where their strengths lie. To this end, split

the spectral representation (with low energy cutoff c) into two parts by introducing an intermediate wave

number K 0,

uðxÞ �
Z K 0

c

 
þ
Z 1

K 0

!
e2pikxE1=2ðkÞdW ðkÞ:

The idea is to treat the first integral with our fixed wave number method (with low wave number cutoff c
and upper wave number cutoff K 0, which we denote by uFðc;K 0;NfÞ, here suppressing dependence on x), and
approximate the second one by the random wave number method (this time using K 0 as our low wave

number cutoff, and denoted by uRðK 0;NrÞ). Thus we write

u � uH ¼ uFðc;K 0;NfÞ þ uRðK 0;NrÞ:

The resulting approximation uH is our hybrid method and can be written uH ¼ uHðc;K 0;Nf ;NrÞ. Its output is
dependent upon c, the low wave number cutoff; K 0, an intermediate wave number; Nf , the number of grid

points for the fixed wave number scheme; and Nr, the number of sample points for the random wave

number method.
5. Method assessment

In this section, the basic strategy for assessing the accuracy of the preceding methods is outlined. For a
power law spectrum it will be convenient to use for evaluation the structure function,

DðxÞ ¼ hjuðxÞ � uð0Þj2i, rather than the covariance function RðxÞ or energy spectrum EðkÞ, because the

Fourier integral for RðxÞ diverges. Also, for a power law spectrum EðkÞ ¼ jkja, an analytical formula for

DðxÞ can be found. (For proper interpretation of Fourier integrals which only exist in a generalized sense,

see [8,11].) Indeed, when �3 < a < �1, we have

DðxÞ ¼ 21�ap�1�aCð1þ aÞ sinða p
2
Þjxj�1�a ð�3 < a < �1; a 6¼ �2Þ;

4p2jxj ða ¼ �2Þ:

	

5.1. Decades of accuracy

The structure function DðxÞ provides a way of testing the accuracy of an algorithm for generating
random fields based on such a given EðkÞ. Generate a large number M of samples ~uuðiÞ (i ¼ 1; . . . ;M) using

the method, and compute the approximate value of the underlying structure function ~DDðxÞ by the estimate

hj~uuðxÞ � ~uuð0Þj2i ¼ ~DDðxÞ � 1

M

XM
i¼1

juðiÞðxÞ � uðiÞð0Þj2 ¼ ~DDMðxÞ:

Finally, compare this estimated model structure function, ~DDMðxÞ, to the true (known) structure function

DðxÞ. The result provides a means of determining how accurate the method is, and over which range (of x).
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We seek to extract an approximate ratio between the largest and smallest accurate length scales by

comparing ~DDMðxÞ and DðxÞ. To this end we examine the relative error between the two,

eDðxÞ ¼
j ~DDMðxÞ � DðxÞj

DðxÞ
at the grid points of our model, and from this extract a range of such values on which eDðxÞ < �, for some �.
For definiteness, say that our working grid (on which we will sample ~uuð�Þ) is ðxiÞ. For testing it helps to use a

logarithmic grid, xi ¼ x0ci, so that a large number of different length scales can be examined with a relatively

small number of grid points. On this grid, we can define a range of accuracy – a set of grid points at which

the method�s output is said to be accurate – by A ¼ fxi jeDðxiÞ < �g.
Ideally the statistics of u would be well enough behaved so that the definition of the range of accuracy A

would be insensitive to the choice of � in some intermediate range of values. In practice, such a well-defined
accuracy region A was not always observed. To get a practical measure of the extent of A then, we defined

the maximum mesh point of the range of accuracy to be the rightmost point with a sufficiently small error:

xmax ¼ maxfxi jeDðxiÞ < �g. From this xmax we then defined a minimum accurate mesh point xmin by asserting

that, of the mesh points within the resulting interval ½xmin; xmax�, a certain sufficiently high fraction of them

(say p) ought to also be accurate,

xmin ¼ minfxi jeDðxjÞ < � for fraction p of the mesh points xj 2 ½xi; xmax�g:

The ratio xmax=xmin then provides a rough guide to the number of accurate length scales in the model.

From xmax and xmin we define the number of accurately modelled decades: d ¼ log10ðrÞ; r ¼ xmax=xmin.

Throughout the testing we used � ¼ 0:1 and p ¼ 0:9, both defined above, for evaluating the computed d
from a given method�s output.

5.2. Assessment of Gaussianity

To gauge Gaussianity, we approximate the kurtosis ~KKðxÞ ¼ h~uuðxÞ4i=h~uuðxÞ2i2 of the model field ~uuðxÞ by
taking our large number M of samples and computing the ratio

~KKMðxÞ ¼ ~mm4ðxÞ=ð ~mm2ðxÞÞ2;

~mm4ðxÞ ¼
1

M

XM
i¼1

~uuðiÞðxÞ4
h i

;

~mm2ðxÞ ¼
1

M

XM
i¼1

~uuðiÞðxÞ2
h i

;

for all x in the model. Since the kurtosis ~KKðxÞ should be 3 (for all x) for Gaussian stochastic processes, we

thus use this estimate ~KKM as a rough measure of the Gaussianity of our method by evaluating its percent

difference from 3; from this difference we extract a number of decades dK of x values over which the model

appears to be nearly Gaussian (by using the methods of Section 5.1).

5.3. Computational cost

We would also like a way of assessing the computational cost required to achieve a given accuracy (i.e.

number of decades). It may be that one method is more accurate than another when a certain budget for

computational cost is prescribed, but the situation becomes reversed if more (or less) operations are al-

lowed. The main concern is how many operations are required per realization, per x value at which the
realization is to be sampled.
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What contributes to the operation cost of a given realization ~uu from a method? Typically, the model

process ~uu is represented as a combination of the following:

1. The results of certain preprocessing calculations. (for example, in the Fourier-wavelet method, we sample

the kernel functions fmð�Þ, to be evaluated once only on a discrete uniform mesh using the inverse Fast

Fourier Transform).

2. A list of generated random numbers, the list being unique for each realization of the sample path.
3. Some analytical expression, which accepts an x value and, in combination with the results of the previous

two items allows the value of the model sample path ~uuðxÞ to be computed at that point. (In practice this

usually involves repeated evaluation of, e.g., trigonometric functions.)

The computations for the first item – done once and for all – can be neglected. The second item involves
computations which are done once per sample path; if the sample path must be known at a large number Nx

of spatial points, then this too becomes negligible. The primary contribution to an operation count comes

from the third item, operations which must be performed in order to convert the list of random numbers -

and precomputed terms – into a sample path value ~uuðxÞ for each x value.

Thus for each method, we attempt to extract a rough count of the labor required per realization, per x
value. We are content to count the necessary trigonometric function calls per realization, per x (for methods

for which this is applicable), and accept this as our cost. Some modification of this approach is required

when treating the Fourier-wavelet method.

5.3.1. Fixed wave number method count

For (13), the main parameter is Nf , the number of grid points for the simple quadrature. Here 2Nf

standard normal random variables are required per realization. Yet, to compute a sample path value ~uuðxÞ
from this list of stored random variables (and from Nf evaluations of the energy spectrum EðkÞ, whose cost
we also neglect) requires two trigonometric function evaluations (one sine, one cosine) per term in the sum.

All told, the fixed wave number method thus costs CF ¼ 2Nf such evaluations per realization per x.

5.3.2. Random wave number method count

For the random wave number method (18), we model the process uðxÞ with a sum using a number Nr of

randomly sampled wave numbers. Once the random frequencies ki are sampled to represent a realization,

the random wave number method – like the fixed wave number method – requires 2Nr trigonometric

evaluations per x value at which ~uuðxÞ is computed. We thus have for the cost of the random wave number

scheme CR ¼ 2Nr.

5.3.3. Hybrid method count

The hybrid method (4) contains a fixed wave number scheme for approximating the low end of the

spectrum with some number Nf of grid points. Simultaneously, it contains a random wave number ap-
proximation to the higher end of the spectrum (from K 0 to 1) using Nr random wave numbers. From the

preceding two counts, one sees then that the total cost for the hybrid method is CH ¼ 2ðNf þ NrÞ.

5.3.4. Fourier-wavelet method count

As detailed in Section 2, computation of the kernels fmð�Þ is achieved by first computing the values fmðxjÞ
on an equidistant grid once and for all, and then interpolating for needed x. This operation thus does not

contribute significantly to our overall cost count.

As with the other methods, this method depends on generating Gaussian random variables to represent

the stochastic process; however, the random variables are generated as needed (using a reversible pseu-

dorandom number generator), and depend on x. All told we need to generate a total of 2NðM þ 1Þ
Gaussian random variables, using the Box–Muller transform, for each x. Since the Box–Muller transform
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obtains two Gaussian random variables from two uniform random variables, there is on average one

trigonometric operation per Gaussian required. We thus take as our operation count CW ¼ 2NðM þ 1Þ for
the Fourier-wavelet method.
5.4. Qualitative behavior

Each method we consider (apart from the Fourier-wavelet method, considered separately) approximates
the process uðxÞ by a finite sum taken over a finite range of wave numbers (whether random or deter-

ministic). Each method therefore contains a smallest wave number kmin and a largest wave number kmax. It is

reasonable to approximate our smallest and largest accurate length scale by xmin � k�1
max and xmax � k�1

min, so

that our number of accurate decades, d, is d � log10ðkmax=kminÞ.
The largest and smallest wave numbers kmax, kmin are obtainable from each method and from a, the

exponent of the power law spectrum, so we may state the expected qualitative behavior of each method

based on a and its parameters.

5.4.1. Fixed wave number

The lowest wave number represented in this method is kmin ¼ c; the highest is kmax ¼ kNf�1 ¼
cþ ðNf � 1ÞDk. We will always make the choice c ¼ Dk, to find that

d � log10ðNfÞ ¼ ðlogð10ÞÞ�1
logðNfÞ

for our fixed wave number method. That is, we expect the decades of accuracy to increase logarithmically

with Nf , the parameter of this method, with log-linear slope � 1= logð10Þ � 0:43. This calculation did not

depend on the specific form of Eð�Þ.
5.4.2. Random wave number

The lowest wave number represented is no smaller than the low wave number cutoff kmin ¼ c0. For
EðkÞ ¼ jkja, a < �1, the condition of equipartition of energy dictates that the highest wave number rep-
resented is at least kmax ¼ c0 � N�ð1=ðaþ1ÞÞ

r , where Nr is the number of random wave numbers used. We thus

expect the number of decades to behave like

d � �1

aþ 1
log10ðNrÞ ¼

�1

aþ 1
ðlogð10ÞÞ�1

logðNrÞ:

So once again we expect logarithmic dependence of the accuracy of this method on its parameter Nr,

although in this case with a log-linear slope of �1=ðaþ 1Þ. Note that this slope is positive for a < �1;

further, the closer að< �1Þ is to �1, the greater this slope will be, and thus the more quickly the accuracy of
the random wave number method is expected to rise with an increase in Nr. This can be understood from

the observation that spectra EðkÞ ¼ jkja with aK� 1 have relatively slowly decaying tails when compared

with smaller (more negative) a; the use of random wave numbers to access the high end of the spectrum can

thus be expected to pay more dividends.

For a ¼ �5=3, this slope is 3=ð2 logð10ÞÞ � 0:65. In particular, we expect this slope for the random wave

number method to be about 3=2 times that for the fixed wave number method (for a ¼ �5=3).
5.4.3. Hybrid method

The hybrid method combines the preceding two methods by using an intermediate wave number cutoff

K 0. The smallest (fixed) wave number represented is kmin ¼ Dk ¼ K 0=Nf , while the largest (random) wave

number represented is kmax ¼ K 0 � N�ð1=ðaþ1ÞÞ
r . The ratio gives us
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d � log10ðNfÞ þ
�1

aþ 1
log10ðNrÞ

for the hybrid method. In other words, we expect the number of decades to be the sum of the results we

would get by applying each method separately.
5.4.4. Optimal hybrid

Suppose we wish to maximize this d for our hybrid method, subject to the constraint that Nf þ Nr ¼ a

constant. (As we have seen, the sum 2ðNf þ NrÞ is a measure of the computational cost of this method.)

When a < �1, a nontrivial optimal choice exists, Nr ¼ ð�1=ðaþ 1ÞÞNf .

In particular, for a ¼ �5=3 we should choose Nr ¼ ð3=2ÞNf (rounded to the nearest integer). In general,

this observation allows us to select such an optimal balance between Nr and Nf if we know the exponent a of
the energy spectrum. The closer a is to �1, the slower the tail decays, and the more random wave numbers

(Nr > Nf ) we ought to include. On the other hand, spectra with more rapidly decaying tails a < �2 can be
expected to benefit from the inclusion of more fixed wave numbers (Nf > Nr) at the lower end of the

spectrum.

Finally, suppose that the choice Nr ¼ �1=ðaþ 1ÞNf is made. The number of decades in this optimized

hybrid method becomes

d � a
aþ 1

log10ðNfÞ þ
�1

aþ 1
log10

�1

aþ 1

� �
;

which for a < �1 shows an advantage over either method separately.

When a ¼ �5=3, we expect a log-linear slope of 5=ð2 logð10ÞÞ � 1:09, or 5=2 times greater than the slope

for the fixed wave number method and 5=3 times greater than the slope for the random wave number

method.
5.4.5. Fourier-wavelet method

From the nature of the wavelets and the relationship

/mnðnÞ ¼ 2�m=2/ð2�mn� nÞ;

it is seen that the small-scale details captured in a wavelet expansion are expected to increase linearly with

m, the octave number. Thus we expect a dependence of the form

d / M þ 1;

where we recall that M þ 1 is the number of octaves included in the model (including the initial octave

m ¼ 0). This linear, rather than log-linear, dependence of the number of decades d on the computational
complexity sets the Fourier-wavelet method apart from the other methods.
6. Numerical results

In this section are presented results obtained by running the methods above for various choices of

parameters. In each case we run the method for M ¼ 2000 realizations, for each chosen value of its

parameters. We calculate the approximate number of decades of accuracy present in the structure
function and kurtosis of each such set of samples using the heuristic formulas described in Section 5, with

parameters � ¼ 0:1 (agreement tolerance) and p ¼ 0:9 (a fudge factor to allow for aberrant points of

misfit).
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For each method we model the process uðxÞ over the interval ½0;X � where X ¼ 1. The initial tests were

performed using the energy spectrum EðkÞ ¼ k�5=3. Subsequently, the exponent was changed to test two

alternate spectra, k�3=2 and k�2.
For the spectrum k�5=3, based on our convention for the Fourier transform, we expect to see the

structure function

DðxÞ ¼ �25=3p2=3Cð�2=3Þx2=3 � 27:3655� x2=3:

Finally, each modelled process ~uuð�Þ was sampled on a logarithmically spaced grid

xi ¼ x0 � ri; i ¼ 0; 1; 2; . . . ;Nx � 1;

where Nx is the total number of spatial points and r ¼ ðX=x0Þð1=ðNx�1ÞÞ
is the common ratio between points.

The smallest point x0 is chosen so as to make sure to represent the smallest possible length scale in the

model. In our tests we had Nx ¼ 100 and x0 ¼ 10�12, so that up to 12 decades could be resolved. Thus

r ¼ 1012=99.

6.1. Results for the fixed wave number method

For the fixed wave number method (13), the number of grid points chosen was related to K (the upper

wave number cutoff) by a heuristic Nf ’ bKX , based on the need to adequately sample the spectrum to

avoid aliasing (we took b ¼ 5). The lower wave number cutoff was taken to be c ¼ Dk. The method was run

for 41 values of K ranging between K ¼ 100 and K ¼ 10; 000, increasing logarithmically.

Fig. 1 shows the number of decades of accuracy in the structure function RðxÞ plotted against K (in

logarithmic scale). The result appears to follow a roughly log-linear dependence, with approximate slope
m ¼ 0:53. Recall from Section 5.4 that we expected a log-linear dependence, with slope approximately

ðlogð10ÞÞ�1 � 0:43, based only on rough estimates of the smallest and largest length scales included.

From the graph, for K � 10,000 we expect no more than four decades of accuracy in the results.
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Fig. 1. Fixed wave number method results: Dependence of decades of accurate structure function on the parameter K, the upper wave
number cutoff. The slope of the log-linear least-squares line (dashed) is m � 0:53.
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6.2. Results for the random wave number method

The random wave number method (18) was applied for various values of Nr, the number of random wave

numbers, ranging between 10 and 2000. Between Nr ¼ 10 and Nr ¼ 400, a test was performed for every

multiple of 10; beyond this Nr was increased more dramatically due to the length of time required by

the calculations, and also because for these high values of Nr the number of decades was not observed to

increase as consistently, and was more sporadic.

Fig. 2 displays the decades of accuracy present in the both the structure function and kurtosis, simul-

taneously. The results are (very) approximately log-linear, with least-squares slopes m ¼ 0:67 and m ¼ 0:74,
respectively. Compare with the approximate slope m � 0:5 of the results of the fixed wave number method,
to see that the accuracy of the random wave number method increases faster with the number of grid points

(and hence, computations) performed.

This is also consistent with the discussion of Section 5.4, in which it was argued that we could expect a

slope of 3=ð2 logð10ÞÞ � 0:65 for this method.

On the other hand, it is seen from Fig. 2 that the number of accurate decades in the kurtosis is con-

sistently lower than the number of accurate decades in the structure function. This coincides with our

earlier observation that the random wave number method will fail to exhibit (multi-point) Gaussianity at

the high wave numbers; indeed, it was seen that for small values x (hence, high wave numbers k) the
computed kurtosis was significantly greater than 3.

6.3. Results for the hybrid method

For our hybrid method (4) the two main parameters are Nf (the number of fixed wave numbers at the

lower end of the spectrum) and Nr (the number of random wave numbers at the higher end). The hybrid

scheme also depends on an intermediate wave number K 0, which plays the simultaneous role of upper cutoff

for the fixed wave number method and lower cutoff for the random wave number method. By our rule of
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Fig. 2. Random wave number method results: Decades of structure function and kurtosis plotted simultaneously. Dashed lines are

least-squares fits with approximate slopes m ¼ 0:67 and m ¼ 0:74, respectively.
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thumb for the fixed wave number method, we have Nf � 5K 0. The parameters K 0 and Nr, therefore, are

equally sufficient to specify the method.

Nine logarithmically equidistant values of K 0 were selected; they corresponded to the range of values of
K used to test the fixed wave number method previously and ranged between K 0 ¼ 10 and K 0 � 4642.

Similarly, ten values of Nr, the random wave number parameter, were chosen, ranging between Nr ¼ 10 and

1000 (also logarithmically equidistant). The hybrid method was then run for all 90 pairs ðK 0;NrÞ coming

from these parameter values.

Fig. 3 represents the computed accurate decades of both the structure function and the kurtosis using the

hybrid method, represented as a surface plot above the two-dimensional grid of parameter values. When a

corresponding surface was fit to the resulting data set for the structure function, the approximate slopes

mF ¼ 0:55andmR ¼ 0:71wereobtained.This appears to coincide reasonablywellwithour estimates of the log-
linear dependence of each method (used individually) on its parameter, in the previous two sections. A similar

fit was performed for the kurtosis data, revealing the coefficients mF ¼ 0:49 and mR ¼ 0:80, respectively.
As can be seen from the consistent gap between the two surfaces in Fig. 3, the hybrid method inherits the

property of the random wave number method that it loses its multi-point Gaussianity (as measured by the

kurtosis) at high wave numbers. The kurtosis accurate decades are 1–2 less than the structure function

accurate decades, more or less consistently.
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Fig. 3. Surface plot of decades of accuracy of hybrid method, versus each of its parameters K 0 and Nr (in log scale). Solid surface
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On the other hand, it is seen that for the highest parameters tested, this method was capable of repre-

senting between 11 and 12 decades of accuracy, in the structure function. It will be seen that the total cost

for doing so is comparable with the cost of running either method separately and obtaining far fewer
decades of accuracy.
6.3.1. Optimizing the accuracy

Recall from Section 5.3 that our approximate cost (per realization, per x value) for the hybrid method

depends only on the sum 2ðNf þ NrÞ. The cost is therefore constant along the lines Nf þ Nr ¼ ðconstantÞ.
However, the number of decades is not constant and appears to have a maximum for some nontrivial

combination of these parameter values. This suggests a strategy for optimizing the hybrid algorithm by

selecting, for a given total cost, the particular values of Nf and Nr which maximize the number of decades

seen in Fig. 3. In Section 5.4 we gave a heuristic argument for the existence and choice of such an optimal

balance between the two methods.

And from the planar fit which was performed, resulting in coefficients mF and mR in the K 0 (or Nf , since
Nf depends linearly on K 0) and Nr directions, respectively, a direction of largest increase can be obtained by

following the gradient ðmF;mRÞT. Maximizing the fitted surface with respect to the constraint

Nf þ Nr ¼ ðconstantÞ reveals that the optimal choices should satisfy

Nr ¼
mR

mF

Nf :

In other words, the amount of each method one should include in the hybrid construction (as measured

by their comparable parameters Nf and Nr, respectively) ought to be in proportion to the respective slopes

mR and mF which describe their accuracy versus cost dependence.

From Fig. 3, we see slopes of approximately mR � 3=4 and mF � 1=2, respectively. The ratio between the

two is 3=2, which suggests we take Nr ¼ 3
2
Nf . Compare this with the discussion in Section 5.4, where this

same balance of

Nr ¼
�1

aþ 1
Nf

�
¼ 3

2
Nf

�

was obtained analytically based on heuristic considerations.

Consequently, a subsequent set of runs was performed for 19 logarithmically equidistant choices of the

parameter Nf , ranging from 5 to 3476, and then choosing the random wave number parameter Nr according

to the optimal relation (6.3.1). The results are presented in Fig. 4.
Notice the same result we saw in Fig. 3, that up to 12 decades of accuracy were achieved. (Results for

the kurtosis followed the same basic pattern as in the more extensive test, lagging 1–2 decades behind the

structure function.) This suggests that we succeeded in following the line of steepest ascent in Fig. 3. The

approximate slope is m ¼ 1:18, which represents a marked improvement over either of the other two

methods employed separately. (Note that since Nr / Nf , the computational cost C is linearly related to Nf ,

so the slope is unchanged if we plot d against logðCÞ instead of logðNfÞ.) Compare with the expected result

from Section 5.4 of 5=ð2 logð10ÞÞ � 1:09.
6.4. Results for the Fourier-wavelet method

In our tests for the Fourier-wavelet method (10) with EðkÞ ¼ k�5=3, following [6] we chose N ¼ 10 as our

cutoff for the sum over n, which ranged from �N þ 1 to N , because the kernel function f0ð�Þ appeared to
have most of its support in the interval ½�10; 10�. The main parameter of the method was thus M , the

number of octaves of detail to include in the approximation (technically, this number is M þ 1 because
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m ¼ 0 represents the largest octave included). Tests were performed for M ¼ 10; 11; 12; . . . ; 40. The results
for the structure function are shown in Fig. 5.

The approximate slope of the fitted line is m ¼ 0:29. For the largest value M ¼ 40, the method was

capable of modelling between 10 and 11 accurate decades.
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Fig. 5. Results for Fourier-wavelet method of Elliott et al. Note the linear, rather than log-linear, dependence of accurate decades on

M , which is proportional to the computational complexity. The approximate slope of the dependence, represented by the dashed line, is

m ¼ 0:29.
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It was observed that the results were roughly Gaussian (K � 3) over the entire spatial range of the

model. Furthermore, for x below a certain threshold a plot of K was relatively flat and still close to 3, to

within the error of our setup (see Fig. 6). This highly Gaussian behavior is likely due to the multiscale

nature of the wavelet expansion: at sufficiently small scales, there is roughly only one octave of functions

fmð�Þ (the lowest, m ¼ �M) which introduces significant variation into the expansion for ~uuðxÞ. Thus for all
such sufficiently small x, the representation is almost a sum of independent Gaussians, and so the Gaus-

sianity (though not the structure function, of course) is almost exact.

6.5. Cost comparison

To compare the accuracy versus computational cost C of the preceding methods, we plot decades of
accuracy versus C for each method (using the cost calculations for each method derived previously) on a

single graph. The results are displayed in Fig. 7.

TheFourier-waveletmethod begins to overtake the randomwave number schemewhen somewhere around

5 decades of accuracy are required in the structure function. This is consistent with the statements of the

authors [6,12]. The optimal hybrid method, by contrast, evidently performs better than the random wave

number method at the same cost level, with a higher (log-linear) slope. It is inevitably overtaken by the linear

payoff displayed by the Fourier-wavelet method, although the crossover point is higher; based on this set of

tests, one can see that for situations requiring roughly 9 ormore decades of accuracy, there is a clear advantage
to using the Fourier-wavelet method to sample a Gaussian random field with spectrum EðkÞ ¼ k�5=3 over a

simpler method of more modest construction such as the optimal hybrid scheme described herein.

6.6. Other spectra

Finally let us examine how the preceding picture changes when the spectrum EðkÞ is varied. We consider

here two alternative spectra of the form EðkÞ ¼ jkja, where the choices a ¼ �3=2 and a ¼ �2 were made.

Recall from the discussion in Section 5.4 how the behavior of each method can be expected to change with

the exponent a. The fixed wave number method appears insensitive to this choice. For the random wave
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wavelet method crosses that of the random wave number scheme at roughly 5:8 decades, and that of the optimal hybrid scheme at 8:8

decades.
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number method we expect the accuracy to depend on computational cost with a log-linear slope which is

j1þ aj�1
times that for the fixed wave number method. Consequently, the closer að< �1Þ is to �1, the

better we expect the random wave number method to perform compared with using fixed wave numbers.
For the optimized hybrid method, which combines aspects of both of these methods in an optimal way,

the predicted slope was a=ðaþ 1Þ, which improves upon that of the random wave number method by a

factor of jaj. As a result, when a � �1 we expect the hybrid method to perform significantly better than the

random wave number method. At the same time, when aK� 1, although the accuracy of the hybrid

method will have a slope similar to that of the random wave number method, we still expect a shift upward

in the graph due to a constant term of j1þ aj�1
log j1þ aj which arose in our heuristic considerations.

Finally, as before we expect the accuracy of the Fourier-wavelet method to depend linearly on its cost

(which is proportional to the number of octaves included in the wavelet expansion).
In what follows we present the results of tests to create plots which are equivalent to Fig. 7 for each of

the two alternative spectra.

6.6.1. Alternative spectrum I

Consider the spectrum

EðkÞ ¼ k�3=2;

which has a more slowly decaying tail, and thus more energy contained in high wave numbers, than the

Kolmogorov spectrum k�5=3.

The results of testing for this spectrum are displayed in Fig. 8. As expected, the random wave number

method appears to be doing marginally better for the larger (closer to �1) exponent a, in capturing the
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more slowly decaying tail. The hybrid method also displays a significant increase in its slope with the

exponent closer to �1.

For the three methods (fixed, random, and hybrid) we obtained the log-linear slopes of 0.54, 0.96, and

1.56, respectively. Compare with the results of Section 5.4; for a ¼ �3=2 we expect these slopes to be

logð10Þ�1 � 0:43, 2 logð10Þ�1 � 0:87, and 3 logð10Þ�1 � 1:30. The results are comparable, particularly in

terms of the ratios between each of the three successively better methods.

As before, due to its linear behavior the Fourier-wavelet method becomes significantly more efficient
than any of the others, including the hybrid method, when a sufficient number of decades of accuracy are

required. For this spectrum we see such a crossover when between 10 and 11 decades (compared with 8–9

for the original spectrum) are required in the structure function. While changing a has affected the log-

linear slopes associated with the random wave number and hybrid methods, the linear slope of the Fourier-

wavelet method (about 0:30, as before) was unaffected.
Overall, the increase in the exponent a (thus, in the thickness of the tail of the spectrum) has had the

overall effect of making both the hybrid and random wave number methods more relatively efficient than

before, as compared with the Fourier-wavelet method.

6.6.2. Alternative spectrum II

Now consider the spectrum

EðkÞ ¼ k�2;

which has a tail that decays more rapidly, and more energy near the origin k � 0, than the Kolmogorov

spectrum k�5=3.
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From the discussion in Section 5.4, we expect this decrease in a to reduce the effectiveness of the random

wave number and hybrid methods (although the latter should remain a significant improvement over the

former). In particular we expect to see log-linear slopes of logð10Þ�1
, logð10Þ�1

, and 2 logð10Þ�1
for the

fixed, random, and hybrid methods, respectively.

The results are displayed in Fig. 9. As expected, for this spectrum the effectiveness of the random wave

number and hybrid methods has been reduced. The slopes of 0.49, 0.49, and 1.00 for the fixed, random, and

hybrid methods are comparable to what was expected from Section 5.4.

By contrast, the Fourier-wavelet method shows no corresponding loss of effectiveness in dealing with

this spectrum. Consequently the crossover point has been reduced, to between 5 and 6 decades. This

can be attributed to the wavelet construction of this method; when M octaves are included in the

expansion, the Fourier-wavelet method includes features from the corresponding length scale of 2�MX ,
regardless of the energy spectrum being approximated. For this spectrum it is evident that the other

methods, by their construction, are required to focus most of their attention on wave numbers near

k � 0 where most of the energy is contained. Since the Fourier-wavelet method lacks this necessity, one

sees that it is an especially appealing method for sampling energy spectra with a large amount of energy

contained in low wave numbers and rapidly decaying tails.
7. Conclusions

A method for sampling stationary Gaussian stochastic processes has been tested and compared with

certain other methods of simple construction and/or wide use. The Fourier-wavelet method was found to
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differ markedly from the other methods in that its effective accuracy, measured in terms of decades, in-

creases linearly (rather than logarithmically) with computational complexity.

This linearly increasing efficiency of the Fourier-wavelet method placed it in stark contrast to the other
methods, whose constructions all entail a built-in logarithmically increasing efficiency. On the other hand,

as its authors point out, the advantage of the Fourier-wavelet method is not immediate, but rather shows

up – dramatically so – for situations necessitating a certain number of decades of accuracy in the solution.

For the well-known Kolmogorov energy spectrum EðkÞ ¼ k�5=3, the results for a hybrid scheme dis-

played up to 8 or more decades of accuracy, at a comparable cost to that of the Fourier-wavelet method.

Although the accuracy of the hybrid method, like that of the ones on which it was built, displayed a log-

linear dependence on computational cost, we saw that it had a greater marginal payoff than either the

random or fixed wave number methods, particularly for power law spectra with rapidly decaying tails
a � �1. At the same time, for slowly decaying tails aK � 1, the hybrid method is still expected to perform

consistently better than the random wave number method, due to the fact that it allows higher wave

numbers to be accessed for the same cost. One caveat is that any hybrid method using random wave

numbers will inherit the inability of such randomization methods to consistently display multi-point

Gaussianity at the highest wave numbers.

Testing for power law spectra with other exponents produced mixed results. Because the random wave

numbers accessed by the hybrid method depend on the exponent of the energy spectrum, we saw that it can

be expected to perform better for spectra with aK � 1 than for spectra with more rapidly decaying tails,
such as aK � 2. This is to be contrasted with the Fourier-wavelet method, whose behavior remained

roughly the same, regardless of a. As a result, the crossover point – the point at which the Fourier-wavelet

method begins to outperform the hybrid method – depended quite sensitively on the exponent a. For
a ¼ �3=2 this crossover occurred when about 10 or 11 decades of accuracy are required in the structure

function; for a ¼ �2, the same crossover point occurred when only 5 or 6 decades are needed.

Overall, it was clear that for situations calling for a sufficiently large number of decades of accuracy, the

Fourier-wavelet method shows a distinct advantage over the other methods. We have also seen that it is

possible to construct a simpler method which would give comparable accuracy for a comparable cost for
situations requiring no more than a certain amount of accuracy, particularly for power spectra with rel-

atively slowly decaying tails. Because of the somewhat trickier implementation of the Fourier-wavelet

method, due in no small part to the necessity to generate Gaussian random variables on an as needed basis,

a rough knowledge of crossover points may provide useful when considering these methods.
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